Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
J Appl Physiol 100: 1059-1064, 2006; doi:10.1152/japplphysiol.00954.2005"Sympathectomy is a technique about which we have limited knowledge, applied to disorders about which we have little understanding." Associate Professor Robert Boas, Faculty of Pain Medicine of the Australasian College of Anaesthetists and the Royal College of Anaesthetists, The Journal of Pain, Vol 1, No 4 (Winter), 2000: pp 258-260
The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf
After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf
After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.
http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract
Monday, April 21, 2008
the regulation of cerebrovascular tone
Brain perfusion is tightly coupled to neuronal activity, is commonly used to monitor normal or pathological brain function, and is a direct reflection of the interactions that occur between neuronal signals and blood vessels. Cerebral blood vessels at the surface and within the brain are surrounded by nerve fibers that originate, respectively, from peripheral nerve ganglia and intrinsic brain neurons. Although of different origin and targeting distinct vascular beds, these "perivascular nerves" fulfill similar roles related to cerebrovascular functions, a major one being to regulate their tone and, therein, brain perfusion. This utmost function, which underlies the signals used in functional neuroimaging techniques and which can be jeopardized in pathologies such as Alzheimer's disease, stroke, and migraine headache, is thus regulated at several levels. Recently, new insights into our understanding of how neural input regulate cerebrovascular tone resulted in the rediscovery of the functional "neurovascular unit." These remarkable advances suggest that neuron-driven changes in vascular tone result from interactions that involve all components of the neurovascular unit, transducing neuronal signals into vasomotor responses not only through direct interaction between neurons and vessels but also indirectly via the perivascular astrocytes. Neurovascular coupling is thus determined by chemical signals released from activated perivascular nerves and astrocytes that alter vascular tone to locally adjust perfusion to the spatial and temporal changes in brain activity.
Edith Hamel