The amount of compensatory sweating depends on the patient, the damage that the white rami communicans incurs, and the amount of cell body reorganization in the spinal cord after surgery.
Other potential complications include inadequate resection of the ganglia, gustatory sweating, pneumothorax, cardiac dysfunction, post-operative pain, and finally Horner’s syndrome secondary to resection of the stellate ganglion.
www.ubcmj.com/pdf/ubcmj_2_1_2010_24-29.pdf

After severing the cervical sympathetic trunk, the cells of the cervical sympathetic ganglion undergo transneuronic degeneration
After severing the sympathetic trunk, the cells of its origin undergo complete disintegration within a year.

http://onlinelibrary.wiley.com/doi/10.1111/j.1439-0442.1967.tb00255.x/abstract

Wednesday, January 5, 2011

GAP-43 mRNA and calcitonin gene-related peptide mRNA expression in sensory neurons are increased following sympathectomy

Sympathectomy has been shown to result in an increased density of fibers immunoreactive for sensory peptides in peripheral targets innervated by both sensory and sympathetic neurons, providing evidence for functional interactions between sympathetic and sensory systems. These findings provided the background for examining the hypothesis that axonal outgrowth is induced from sensory neurons following sympathectomy. We examined the expression of GAP-43 mRNA, a specific marker for axonal outgrowth, in cervical (C3, C7, C8) and thoracic (T1, T2) dorsal root ganglia (DRG) of the rat following bilateral removal of the superior cervical ganglion, to assess whether the described increases in peptidergic afferent fibers reflected axonal outgrowth. In situ hybridization was used with 35S labeled riboprobes complementary to GAP-43 mRNA, and to calcitonin gene-related peptide (CGRP) mRNA, a marker for a major subset of thin-fiber sensory neurons. The density of GAP-43 mRNA nearly doubled by 18 h following sympathectomy and reached a threefold increase by 3 days. By 45 days following surgery, the GAP-43 mRNA level was still nearly twice that of normal animals. CGRP immunoreactivity was also examined: the density of fibers in the iris and cornea of sympathectomized animals was considerably greater from two weeks to 45 days following surgery, than in sham-operated controls. Concomitantly, there was a slight but significant increase in CGRP mRNA expression in T1 and C3 DRG 14 days post
http://www.refdoc.fr/Detailnotice?idarticle=15110598

anatomic variations of the T2 nerve root

6 (9.1%) sides showed a single large ganglion formed by the stellate and the second thoracic sympathetic ganglia. The second thoracic sympathetic ganglion was most commonly located (50%) in the second intercostal space. Conclusion: The anatomic variations of the intrathoracic nerve of Kuntz and the second thoracic sympathetic ganglion were characterized in human cadavers.
Journal of thoracic and cardiovascular surgery Y. 2002, vol. 123, No. 3, pages 498-501 [bibl. : 14 ref.
http://www.refdoc.fr/Detailnotice?idarticle=9466218

immune privilege is lost in the absence of a functional sympathetic innervation of the eye

Mounting evidence points to a role for the sympathetic nervous system in suppressing inflammation. This role might be of specific relevance for immune privilege in the eye, where, sporadically, patients with denervated sympathetic fibers develop chronic inflammation. The present study used mice to investigate whether the robust innervation of intraocular structures by the sympathetic system plays a role in maintaining ocular immune privilege. We first performed surgical removal of the superior cervical ganglion, which supplies sympathetic fibers to the eye, and studied the immune response generated against soluble antigens or allogencic tumor cells injected into the ocular anterior chamber under these conditions. Our results show that in the absence of functional sympathetic fibers, the eye loses its ability to prevent either the immune rejection of intraocular allogeneic tumor cells or the suppression of delayed type hypersensitivity responses against soluble antigens injected in the anterior chamber. This loss of immune privilege is accompanied by a decrease in the concentration of transforming growth factor-β in the aqueous humor. These results suggest that immune privilege is lost in the absence of a functional sympathetic innervation of the eye, allowing intraocular immune responses to become exaggerated. We conclude that ocular sympathetic nerves are critical for the generation and maintenance of immune privilege in the eye through the facilitation of local transforming growth factor-β production.
http://cat.inist.fr/?aModele=afficheN&cpsidt=21889071